
EFFECTIVENESS FACTOR FOR A NON-ISOTHERMAL SIMPLE
CATALYTIC REACTION WITH COMBINED TRANSPORT PROCESSES:
MAXWELL–STEFAN APPROACH

Petr SCHNEIDER

Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, 
165 02 Prague 6-Suchdol, Czech Republic; e-mail: schneider@icpf.cas.cz

Received October 29, 1997
Accepted December 15, 1997

A two-step procedure is developed and tested for the prediction of effectiveness factors for stoi-
chiometrically simple catalytic reactions. In the first step the dependences of state variables (concen-
trations, temperature, pressure) on the concentration of the key reaction component is obtained. The
knowledge of these dependences allows then all the dependent variables in the catalyst pellet mass
and heat balances to be expressed by this concentration. In the second step, a single balance differen-
tial equation is solved and the effectiveness factor is obtained. In addition, a deeper insight into the
concentration and temperature conditions inside the pores is gained. Information of this kind can cast
light on some features of the catalytic reactor behaviour. The analysis of ammonia synthesis illus-
trates this point.
Key words: Pore diffusion; Effectiveness factor; Maxwell–Stefan diffusion; Ammonia synthesis.

The constitutive equation that forms the basis of the largest part of the extensive lit-
erature on the prediction of effectiveness of porous catalysts is the Fick law1–5. This
law assumes direct proportionality between the diffusion flux contribution for a compo-
nent and the composition gradient of this component. In porous solids, such a law is
correct only for binary diffusion on condition that diffusion is purely of the bulk or
Knudsen type. Since all actually important catalytic reactions are multicomponent and
pore diffusion takes place usually in the transition diffusion region, the application of
the Fick law can be considered only as a rough approximation.

This problem can be solved by the application of the modified Maxwell–Stefan dif-
fusion equation (see, e.g., ref.6) which accounts for both the multicomponent character
of reaction mixtures as well as for the transition diffusion mechanism7,8.

It is the aim of this contribution to show how the problem of the catalyst effective-
ness prediction, in which the combined mass transport due to composition gradients
(diffusion; described by the modified Maxwell–Stefan equation) and pressure gradient
(permeation; described by the Weber equation) can be simply solved for stoichiometri-
cally simple reactions. As an illustration, the proposed method is applied to the high-
temperature, high-pressure ammonia synthesis. Since the transport parameters of the
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commonly used promoted iron catalyst are not available, arbitrary values were used.
This prevents, however, direct comparison of the obtained results with experiments.

PROBLEM FORMULATION

To predict the influence of mass and heat transport in porous catalysts on the rate of
heterogeneous reactions, it is necessary to solve the differential mass balances of reac-
tion mixture components together with the heat balance. For simple geometric shapes
of catalyst pellets (infinite slab w = 0, infinite cylinder w = 1, sphere w = 2) and a
simple reaction with n reaction components

∑ai
i=1

n

 Ai = 0 (1)

(stoichiometric coefficients ai  > 0 for reaction products, ai < 0 for reactants and ai = 0
for inert components), these balances have the following form:

1
zw 

d
dz

(zwN) = −R(c,T)  , (2)

1
zw 

d
dz

(zwQ/Ts) = − 
(−∆Hr)R1

Tsa1
  . (3)

Here z is the geometric coordinate from the centre (z = 0) to the outer surface of the
porous pellet (z = R), R is the radius of the sphere or infinite cylinder or the half-thick-
ness of an infinite slab, c = [c1, c2, …, cn]

T is the vector of molar concentrations of
reaction components and N is the vector of molar flux densities of reaction mixture per
unit total cross-section of the pellet, N = [N1, N2, .., Nn]

T, and R is the vector of rates
of formation of reaction components per unit volume of the catalyst pellet, R = [R1, R2, …,
Rn]

T. Concentration- and temperature-dependent components of this vector, Ri , are
related to the (always positive) reaction rate, r (i.e. moles of reaction (1) turnovers) per
unit volume of the porous catalyst

Ri = ai r  . (4)

Thus, Ri  is positive for reaction products (ai > 0; rate of formation) and negative for
reactants (ai < 0; rate of disappearance). Q is the heat flux density per unit total cross
section of the pellet, due to the heat of reaction (1), ∆Hr (Joule per mole of reaction (1)
turnovers), Ts is the pellet surface temperature.
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Sign convention: If temperature or a component concentration decreases from the outer pellet surface
(z = R) toward the pellet centre (z = 0), the corresponding flux density, Ni or Q, is directed toward
the pellet interior and is positive.

Using the Maxwell–Stefan approach in formulation of combined gas transport due to
composition and pressure gradients in multicomponent gas mixtures, the constitutive
equations, which relate the flux densities N to the driving forces dc/dz can be formu-
lated for two models of porous medium, viz. the Mean Transport–Pore Model (MTPM)
and Dusty–Gas Model (DGM) in the following way:

dc
dz

 = FN  . (5)

The elements of n*n matrix F = { fij} for MTPM and DGM are shown in Appendix 1.
To obtain the profiles of concentrations of reaction mixture components, ci(z) (i =

1,…, n), and temperature, θ(z), it is necessary to solve the system of (n + 1) coupled
ordinary differential equations (6) and (7) obtained by combining Eqs (2) and (5), and
Eq. (3) with the Fourier law Q = λ dT/dz:

1
zw 

d
dz

 



zwF−1 

dc
dz




 = R  , (6)

1
zw 

d
dz

 



zwλ 

dθ
dz




 = − 

(−∆Hr)
Tsa1

  . (7)

Here, λ denotes the effective heat conductivity of the porous catalyst and θ ≡ T/Ts

where Ts is the temperature at the outer surface of the catalyst pellet (T(R) = Ts).
The boundary conditions of the system (6), (7) follow from
1. the symmetry of the concentration and temperature fields

at z = 0:     dc/dz = 0 ,

            dθ/dz = 0 , (8)

2. the known concentrations and temperature at the pellet outer surface

at z = R:      c = cs ,  

             θ = 1 ,  (9)
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cs represents the vector of molar concentrations of a reaction mixture component at the
outer catalyst surface (c(R) = cs).

This is the (n + 1)-dimensional split boundary value problem which has to be solved
iteratively. Even though standard algorithms exist for this purpose, repeated solution,
e.g., for changing bulk gas composition and temperature along an integral reactor, pres-
ents an unpleasant numerical problem. Additional complication is introduced by the
necessity of inverting matrix F in each integration step.

Solution of the multidimensional boundary value problem can be, however, circum-
vented by taking into account the stoichiometry of reaction (1) and splitting the solu-
tion into two steps.

TWO-STEP SOLUTION METHOD

First Step

Obviously, the molar flux densities, Ni, are coupled by the reaction stoichiometry (1)

Ni

ai
 = 

Nj

aj
  ,     i, j = 1, …, n  . (10)

For inert components of the reaction mixture both their net flux densities and stoi-
chiometric coefficients equal zero. Thus, it is possible to write Eq. (5) in the form of
following constitutive equations

dci

dz
 = 

N1

Di
  ,     i = 1, ..., n (11)

with the (formal) global diffusivities Di  defined as

1
Di

 = ∑ 
j=1

n
aj

a1
 fij  ,     i = 1, ..., n  . (12)

Similarly, from the Fourier law,

dθ
dz

 = 
Q

λTs
  . (13)

Under steady-state conditions, the mass flux of the key reactant (e.g., A1) across a
boundary surface surrounding a portion of the porous structure equals the amount re-
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acted within this portion. The released reaction heat must all be transferred across the
same boundary, i.e.,

Q = N1(−∆Hr)/a1  . (14)

Thus,

dθ
dz

 = 
N1

Dn+1
(15)

with

1
Dn+1

 = 
−∆Hr

λTsa1
  . (16)

From Eqs (11), (12), (15), and (16) it follows that the relations between concentra-
tions of non-key components (A2,…, An) and the key component (A1), ci = ci(c1), and
dimensionless temperature and concentration of the key component, θ(c1), are de-
scribed by the set of first-order ordinary differential equations (17)

dci

dc1
 = 

D1

Di
  ,     i = 2, ..., n

dθ
dc1

 = 
D1

Dn+1
  ,

(17)

with boundary conditions describing the situation at the outer surface of the catalyst
pellet

for  c1 = c1s :     ci = cis  ,     i = 2, ..., n

θ = 1 (18)

By integrating the initial value problem (17) from c1 = c1s to c1 = 0 (in case of incom-
plete disappearance of the key component A1 under equilibrium conditions, to c1 = c1

eq),
the mutual dependences ci(c1) (i = 2, …, n) and θ(c1) are obtained. Obviously, the total
molar concentration, c, can be obtained as
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c = ∑cj
j=1

n

  . (19)

For perfect gases, the pressure, p, follows as p = cRgT. Numerous preliminary calcula-
tions have shown that the dependences ci(c1) and θ(c1) are monotonous and nearly
linear and thus can be easily approximated by low-order polynomials.

Second Step

In the course of integration of system (17), it is easy to evaluate simultaneously the
global diffusivity D1 as a function of c1; D1(c1). Because of the monotonous nature of
this dependence, it is easy to approximate D1(c1), e.g., by a low-order polynomial.
Then, it is feasible to use directly the second-order ordinary differential equation ob-
tained by elimination of N1 between the mass balance (2), (for i = 1), and constitutive
equations (11). With the following definitions

u ≡ 
c1

c1s
     ∆ ≡ 

D1

D1s
     ρ ≡ 

R1

R1s
     x ≡ 

z
R

  , (20)

this ordinary differential equation can be written as

d2u
dx2 + 

w
x

 
du
dx

 + 



du
dx





2

Φ = M2 
ρ

∆
  , (21)

where the generalized Thiele modulus M is given as

M2 ≡ R2 
−R1s

c1s D1s
  , (22)

and Φ characterizes the concentration dependence of the global effective diffusivity,
D1, on c1:

Φ ≡ 
d ln (∆)

du
  . (23)

R1s is the rate of key-component formation for concentrations and temperature at the
outer surface of the catalyst pellet, R1s = R1(cs, θ = 1). Similarly, D1s, is the global
diffusivity at the catalyst outer surface, D1s = D1(cs, θ = 1).

Boundary conditions to be used with Eq. (21) are
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at  x = 0     du/dx = 0  ,
at  x = 1     u = 1  ,

(24)

i.e., a split boundary value problem for one second-order ordinary differential equation
must be solved. From the obtained profile u(x), i.e., c1(z) and the dependences ci(c1) (i =
2,…, n), and θ(ci), determined in the first step, it is possible to calculate R1(z).

The catalyst effectiveness factor, η, defined in the usual way as the ratio of the
amount of reactant actually reacted in the catalyst pellet to the amount which would
react under conditions without mass and heat transport resistance, can be determined by
integration of local rates of key-component reaction, R1, over the whole pellet

η = 
w + 1
Rw+1  ∫ zw

0

R R1

R1s
 dz = (w + 1) ∫ xw

0

1

ρ dx  . (25)

EXAMPLE: AMMONIA SYNTHESIS

The general formulation developed above will be illustrated with the case of ammonia
synthesis

N2 + 3 H2 = 2 NH3 (A)

(A1 ≡ N2; A2 ≡ H2; A3 ≡ NH3; the presence of an inert gas, A4 (e.g., Ar), is assumed:
hence, n = 4). The stoichiometric coefficients are: a1 = –1; a2 = –3; a3 = 2; a4 = 0.

The first attempts in the field of effectiveness factor in ammonia synthesis were
summarized by Nielsen9. More realistic formulations were used later by Dyson and
Simon10, Sing and Saraf11 and Szeifert et al.12.

First Step

The global diffusivities D1, D2, D3, D4 and D5 are defined by Eq. (12) using F  matrix
elements, fij, given in the Appendix 1 for MTPM and DGM.

The set of coupled ordinary differential equations for relations between concentra-
tions and temperature, and concentration of the key component, c2(c1), c3(c1), c4(c1),
θ(c1), has the following form

dc2

dc1
 = 

D1

D2
     

dc3

dc1
 = 

D1

D3
     

dc4

dc1
 = 

D1

D4
     

dθ
dc1

 = 
D1

D5
  . (26)
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The total molar concentration, c, equals the sum of molar concentration of reaction
mixture components: c = c1 + c2 + c3 + c4.

The set of ordinary differential equation is integrated from c1 = c1s (where c2 = c2s; c3 = c3s;
c4 = c4s; θ = 1) to c1 equal to zero or to equilibrium value, c1

eq. Substitution of the
current variables (ci, θ) into the equilibrium condition of ammonia synthesis13,

Kp(T) − 
c3

2

c1c2
3 c⊕

2  = 0  , (27)

can check attaining equilibrium conditions in each integration step (c⊕ denotes the
molar concentration in the standard state of gases, i.e., at system temperature and pressure
101.325 kPa). When this condition is fulfilled, further integration can be stopped. Dur-
ing the integration, the dependence of global diffusivity, D1, on the molar concentration
of the key component, c1, is evaluated. D1 for conditions at the outer surface of the
catalyst pellet, D1s, is determined by substitution of the surface values of variables into
D1 definition.

The dependences c2(c1), c3(c1), c4(c1), θ(c1), D1(c1), obtained for MTPM and pa-
rameters summarized in Table I are shown in Figs 1 and 2. It can be seen that straight
lines are obtained for ci(c1) (i = 2, …, 4) as well as for θ(c1) and D1/D1s(c1).

Also shown in Fig. 1 is a slight dependence of the relative total pressure on concen-
tration of the key component, c1. As expected, the total pressure decreases in the direc-

0.0                             0.5                               0                                 1                                  2

c1 (N2), mmol cm–3
c1 (N2), mmol cm–3

i = 4, Ar i = 4, Ar

i = 3, NH3

i = 3, NH3

i = 2, H2

a                                                                        b
3

2

1

0

c i
 , 

m
m

ol
 c

m
–3

i = 2, H2

FIG. 1
Concentration dependences for ammonia synthesis at 700 K and 19.78 MPa (i.e., 200 atm) according
to MTPM. A1 ≡ N2; A2 ≡ H2; A3 ≡ NH3; A4 ≡ Ar. Bulk gas composition N2/H2/NH3/Ar (vol.%):
a (stoichiometric ratio N2/H2 = 1/3) – 22.5/67.5/0/10; b (equimolar ratio N2/H2 = 1/1) – 45/45/0/10.
Dotted lines show unattainable concentrations above reaction equilibrium
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tion toward the pore end, i.e., with decreasing c1. Owing to the large mean transport-
pore size (〈r〉 = 100 nm), the Knudsen transport contribution is minor and the effective
permeability quite high. Thus, small total pressure gradients suffice to produce per-
meation fluxes of reaction mixture components.

0.0                             0.5                                0                                 1                                  2

c1 (N2), mmol cm–3 c1 (N2), mmol cm–3

c/cs

T/Ts

a                                                                        b
1.1

1.0

0.9

0.8

c 1
, 

m
m

o
l c

m
–3

D/D1s

T/Ts

c/cs

D/D1s

FIG. 2
Dependences of temperature (T/Ts), total pressure (c/cs) and global diffusivity (D1/D1s), on c1 for ammonia
synthesis at 700 K and 19.78 MPa (i.e., 200 atm) (MTPM). A1 ≡ N2; A2 ≡ H2; A3 ≡ NH3; A4 ≡ Ar.
Bulk gas composition N2/H2/NH3/Ar (vol.%): a (stoichiometric ratio N2/H2 = 1/3) – 22.5/67.5/0/10;
b (equimolar ratio N2/H2 = 1/1) – 45/45/0/10

TABLE I
Parameters for effectiveness factor calculations

Parameter             Value         

  Temperature 700 K

  Pressure 19.78 MPa (i.e., 200 atm)

  Mean transport-pore radius, 〈r 〉 100 nm

  Mean of squared transport pore radii,  〈r2 〉 10 000 nm2

  Geometric parameter, ψ 0.1

  Binary bulk diffusivities, Dij
m estimated refs21,22

  Catalyst effective thermal conductivity,  λ 0.001 J cm–1 s–1 K–1

  Reaction enthalpy,  ∆Hr –92.1 kJ mol–1

  Pellet shape, w (sphere) 2

  Pellet radius, R 0.3 cm
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Contrary to expectation, for a reaction accompanied by a decrease in the number of
moles, DGM predicts a slight total pressure increase with decreasing c1. This is even
more marked for smaller pores. For 〈r〉 = 5 nm and the equimolar concentration ratio of
nitrogen and hydrogen in the bulk gas, DGM predicts 21.48 MPa (i.e., 212 atm) at the
place in the pore where nitrogen is completely exhausted. In agreement with expecta-
tion, MTPM predicts for the same conditions 19.86 MPa (i.e., 196 atm). Therefore, the
following calculations were performed with MTPM only.

By using the published13 standard Gibbs energy change of reaction (1), ∆Gr
0, the

equilibrium constant, Kp, was determined from −∆Gr
0 = RgT ln (Kp). Application of Eq. (27)

then permitted to determine the reaction mixture compositions inside the pores which
are below equilibrium (full lines in Fig. 1). Obviously, compositions for which the
reaction equilibrium is exceeded (dotted lines in Fig. 1) cannot be reached. The attain-
able composition intervals are very narrow, which points to a significant role of reac-
tion equilibrium in the ammonia synthesis. It can be also seen that hydrogen
concentration decreases much less than nitrogen concentration even though the bulk
gas at the pore entrance contains the stoichiometric ratio of components. Argon concen-
tration inside the pores remains nearly the same as in the bulk gas, similarly as the total
molar concentration (pressure).

Second Step

If the kinetic equation of the reaction is known, then the approximations for c2(c1),
c3(c1), c4(c1), θ(c1) and D1(c1) can be used for evaluation of ∆ and ρ (Eq. (20)) and the
derivative d ln (∆)/du (Eq. (23)) as functions of u (i.e., dimensionless c1). The Thiele
modulus, M (Eq. (22)), is determined from the pellet surface conditions. The integration
of the mass balance (21) with split boundary conditions (24) is performed via any suit-
able numerical algorithm (e.g., a shooting method).

Since the Temkin–Pyzhev rate equation (see, e.g., refs10–12,14,15) is inapplicable to the
inlet of a packed bed catalytic reactor where the reaction mixture is free of ammonia,
an equation of the form suggested, e.g., by Thomas and Thomas16 was used

r = 
k (p1 − p1

∗)/p⊕




1 + K 





p⊕
0.5p3

p2
1.5









2  . (28)

Here pi are the component partial pressures, p⊕ = 101.325 (dimensionless) and p1
∗

denotes nitrogen partial pressure in equilibrium with other reaction mixture compo-
nents,

p1
∗ = p⊕

2  p3
2 /(p2

3Kp)  . (29)
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The constants k and K in the form

k = k0 exp 




A 



1
T

 − 
1

700






  ,

(30)

K = K0 exp 




B 



1
T

 − 
1

700






  ,

were obtained by matching the high-pressure experimental data of Nielsen14 for tempera-
tures 410–500 °C. The following values were obtained: k0 = 395 mmol s–1 MPa–1 cmpellet

−3 ,
A = 8.2396 K–1, K0 = 260.8 MPa1/2, B = 3 470.7 K–1.

Using this rate equation, the profile of attainable key component concentration c1(x)
is obtained. By combining c1(x) with approximations c2(c1), c3(c1), c4(c1) and θ(c1), it
is possible to determine the concentration profiles of all the reaction mixture compo-
nents, ci(x), as well as the temperature profile T(x). From Fig. 3 it can be seen that for
hydrogen, nitrogen and argon these profiles are only very slightly curved (note the
scale of c1, c2 and c4 axes). Only the ammonia profile is more pronounced. The tem-
perature profile, T(x), is not shown as the calculations only predict an increase of 0.2 K
in the pellet centre.

The profile of local reaction rates for the stoichiometric N2/H2 mixture containing no
ammonia and 10% argon are shown in Fig. 4 for 700 K and 19.78 MPa (i.e., 200 atm).
The profile is very steep near the pellet outer surface showing that the main proportion
of the reaction takes place in a shallow outside layer of the catalyst pellet. The effec-

  45.0

  44.5

 135.0

 134.5

   1.0

   0.5

   0.0

19.995

19.985

0.0                                    0.5                                    1.0x

N2

H2

NH3

Ar

p1/101.325
     kPa

p2/101.325
     kPa

p3/101.325
     kPa

p4/101.325
     kPa

FIG. 3
Partial pressure profiles, (pi(x), i = 1–4),
inside a porous catalyst for ammonia
synthesis at 700 K and 19.78 MPa
(i.e., 200 atm) (MTPM). A1 ≡ N2;
A2 ≡ H2; A3 ≡ NH3; A4 ≡ Ar. Bulk
gas composition N2/H2/NH3/Ar
(vol.%): (stoichiometric ratio N2/H2 =
1/3) – 22.5/67.5/0/10. (Partial pressures,
pi = ci Rg T, are used instead of
molar concentrations ci .)
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tiveness factor, η, calculated according to Eq. (25) equals 30.8%. As a rough compari-
son, Dyson and Simon10 predict for similar conditions η = 13%.

The problem of the effectiveness factor for ammonia synthesis combines the differ-
ing transport rates of reaction mixture components, which make the composition inside
pores quite different from the bulk gas composition, with the unfavourable reaction
equilibrium. To look further into this problem, the effectiveness factors for the inlet of
a packed-bed reactor (i.e., with no ammonia presence in the bulk gas) was calculated
for different nitrogen/hydrogen ratios. The results are presented in Fig. 5 which shows
the sensitivity of η to this factor.

Another example, shown in Fig. 6, illustrates the sensitivity of η to the content of
ammonia in the bulk gas. Along a packed bed reactor, in which nitrogen and ammonia
are consumed and ammonia is produced, the effectiveness factor increases from the
lowest value at the reactor entrance (η = 30.8%) to nearly 100% when a 5% conversion
is reached. However, at this point, the reaction mixture is close to thermodynamic

1.0

0.5

0.0
0.0                                        0.5                                         1.0x

r(x)/rs

FIG. 4
Profile of local reaction rates for am-
monia synthesis at 700 K and 19.78 MPa
(i.e., 200 atm) (MTPM). Bulk gas compo-
sition N2/H2/NH3/Ar (vol.%): (stoichio-
metric ratio N2/H2 = 1/3) – 22.5/67.5/0/10

0.6

0.4

0.2

0.0
0.0             0.2              0.4             0.6              0.8             1.0

c1/(c1 + c2), vol.%

η

FIG. 5
Influence of nitrogen mole fraction in the
bulk gas on the effectiveness factor for
ammonia synthesis at 700 K and 19.78
MPa (i.e., 200 atm) (MTPM). Bulk gas
contains no ammonia and 10% Ar.
Dotted lines show the effectiveness factor
for stoichiometric N2/H2 mixture
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equilibrium and hence the reaction rate is nearly zero; the mass and heat transport, then,
play no role.

CONCLUSIONS

The suggested two-step procedure for determination of catalyst effectiveness factor for
stoichiometrically simple reactions removes the necessity of solving the boundary
value problem for sets of coupled non-linear differential equations. At the same time, a
deeper insight into the concentration and temperature conditions inside the pores is
gained. Information of this kind can cast light on some features of catalytic reactor
behaviour. An analysis of the ammonia synthesis illustrates this point.

APPENDIX 1

Matrix F

The modified Maxwell–Stefan equation can be used for relating the molar flux den-
sities, Ni, to molar concentration gradients.

The actual form of dependences of fij on ci and parameters that characterize the pore
structure of the catalyst, depends on the way the pore structure is modelled and on the
applied physical description of individual mass transport processes taken into account.

The mean transport-pore model (MTPM, refs17–19) visualizes that part of the pore
structure through which the decisive part of mass transport takes place as a bundle of
straight cylindrical non-intersecting capillaries with radii distributed around the mean 〈r〉
(mean transport-pore radius, model parameter). The distribution of pore radii is charac-
terized through the mean squared transport-pore radius 〈r2〉 (model parameter). The fact
that not necessarily all pores are active in mass transport is expressed in the third model

1.0

0.5

0.0
0                           5                          10                          15

Conversion to ammonia, %

η

FIG. 6
Change of the effectiveness factor with
bulk gas conversion to ammonia (770 K,
19.78 MPa, i.e., 200 atm) (MTPM). Stoi-
chiometric ratios of N2, H2 and NH3 in the
bulk gas; at zero conversion, the bulk gas
contains 10% Ar
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parameter, ψ, which combines the porosity of transport pores, ε, with their tortuosity, q:
ψ = ε/q. These parameters are the material constants of the porous medium described
by MTPM and have to be obtained experimentally.

When these model assumptions are combined with the Maxwell–Stefan equation for
multicomponent diffusion in the transition region between Knudsen diffusion and
molecular diffusion, and modified Darcy equation (see Appendix 2) for gas mixture
permeation, the elements fij  of matrix F in Eq. (5) have the form

fii = 
1

Di
k + 

αi ci

cDi
k  + ∑

cj

cDij
m

j=1
j≠i

n

  ,     i = 1, ..., n

(A1.1)

fij = ci 




αi

cDj
k − 

1
cDij

m




  ,     i, j = 1, ..., n;     i ≠j

where

αi = 

1 − 
Bi

Di
k − ∑cj(Bi − Bj)

cDij
m

j=1
j≠i

n

∑
cj Bj

cDj
k

j=1

n

  ,     i = 1, ..., n  . (A1.2)

The effective Knudsen diffusion coefficient of component i, Di
k, and the effective bi-

nary molecular diffusion coefficient of pair i–j, Dij
m, are defined as follows

Di
k = 〈r〉ψKi  ,     Dij

m = ψDij
m  , (A1.3)

where Dij
m is the molecular diffusivity of pair i–j and

Ki = 
2
3
 




8RgT

πMi





1/2

(A1.4)

(Mi  is the molecular weight of component i).
The dusty-gas model (DGM, refs8,20) visualizes the porous medium as a collection of

giant spherical molecules (dust particles) kept in space by external force. The motion of
gas molecules in the space between dust particles is described by the kinetic theory of
gases. The DGM transport parameters k0 and k1 appear in the definitions of effective
diffusion coefficients Di

k and Dij
m (see below). The third transport parameter B0 charac-

terizes the viscous flow contribution (Appendix 2). Similarly to MTPM, k0, k1 and B0
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have to be obtained experimentally for the given porous solid. Formally, DGM para-
meter k0 can be identified with the product of MTPM parameters 〈r〉ψ and parameter k1

with ψ. Also, B0 equals 〈r2〉ψ/8.
The elements of the DGM matrix F, fij , are identical with the corresponding elements

of the MTPM matrix. The only difference is in the definition of αi. For DGM it reads

αi = 

− 
B
Di

k

1 + B ∑
cj

cDj
k

j=1

n
  ,     i = 1, ..., n  . (A1.5)

The effective Knudsen diffusion coefficient of component i, Di
k, and the effective bi-

nary molecular diffusion coefficient of pair i–j, Dij
m, are given as

Di
k = k0 Ki  ,     Dij

m = k1Dij
m  . (A1.6)

APPENDIX 2

Effective Permeability

For MTPM, the permeation contribution to the molar flux density of component i, Ni
f,

is given by the modified Darcy equation

Ni
f = Bi 

ci

c
 
dc
dz

  . (A2.1)

Under non-isothermal conditions, the correct driving force in the Darcy relation is

1
RgT

 
dp
dx

 = 
1
T

 



T 

dc
dx

 + c 
dT
dx




 = 

dc
dx

 + c 
d ln T

dx
  .

The assumption that the driving force c(d ln T/dx) may be neglected can be formulated as

c 
d ln T

dx
 << 

dc
dx

     i.e.     
d ln T
d ln c

 << 1     ⇒     
dT
T

 << 
dc
c

  .

This means that when the isothermal driving force in the Darcy equation is used, the relative tem-
perature change must be much lower than the relative change in total molar concentration.

As an example, let us consider the following situation: At p = 20.265 MPa (i.e., 200 atm) and
T = 700 K, the total molar concentration c = 3.48 mmol cm–3. If ∆c = 10% of c and ∆T = 10 K,

266 Schneider:

Collect. Czech. Chem. Commun. (Vol. 63) (1998)



then, dc/c ≈ 0.1 and dT/T ≈ 10/700 = 0.014. Hence, dT/T << dc/c (0.014 < 10), and the condition for
neglecting of the temperature driving force is fulfilled.

The effective permeability coefficient for each component, Bi , is expressed by the
Weber equation modified for multicomponent mixtures17,18

Bi = Di
k 

ωνi + Kni

1 + Kni
 + 

〈r2〉ψ
8µ p  . (A2.2)

Here 〈r2〉 stands for the third parameter of the MTPM to be obtained experimentally.
It represents the mean value of the distribution of squared transport-pore radii. Para-
meter ω is a numerical coefficient (ω = 3π/16, π/3, …) which depends on the develop-
ment details of the Weber equation; νi is the square root of relative molar mass

νi = (Mi/M
__

)1/2  ,     M
__

 = ∑ 
i=1

n

yiMi  , (A2.3)

yi’s are the component mole fractions in the n-component gas mixture, Kni are the
Knudsen numbers, i.e., the ratios of molecule mean free-path lengths, λi , to pore
diameter. The problem of obtaining the mean free-path length of a component in a
multicomponent mixture was analysed earlier17.

Usually, the permeability measurements performed on porous solids result in effec-
tive permeabilities which depend linearly on pressure. This situation is in agreement
with the Weber equation both for very high or very low values of the Knudsen number.
In case of coarse pores of the promoted iron catalyst, the Knudsen numbers are evi-
dently very low. Hence, the following linear dependences Bi(p)

Bi = Di
k ω νi + 

〈r2〉ψ
8µ  p (A2.4)

were used in the present calculations instead of the full Weber equation (A2.3).
In DGM, only the viscous contribution to the net permeability flux is considered.

Hence,

Ni
f = B 

ci

c
 
dc
dz

  , (A2.5)

with the effective permeability coefficient B (identical for all mixture components)

B = 
B0 p

µ   , (A2.6)
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where B0 is the third DGM model parameter. By comparing with MTPM, B0 can be
expressed as B0 = 〈r2〉ψ/8.

SYMBOLS

ai stoichiometric coefficient of component i
Ai i-th component of reaction mixture
A temperature coefficient of ammonia synthesis rate constant k , K–1

B effective permeability (DGM), cm2 s–1

B temperature coefficient of ammonia synthesis adsorption coefficient K, K–1

Bi effective permeability of component i (MTPM), cm2 s–1

B0 viscous flow parameter (DGM), cm2

ci molar concentration of component i, mol cm–3

c total molar concentration, mol cm–3

c vector of molar concentrations, mol cm–3

c⊕ molar concentration in standard state, mol cm–3

Di
k effective Knudsen diffusivity of component i, cm2 s–1

Dij
m bulk diffusivity of pair i–j, cm2 s–1

Dij
m effective bulk diffusivity of pair i–j, cm2 s–1

Di global diffusivity for component i, cm2 s–1

f ij element of matrix F, s cm–2

F matrix, s cm–2

∆Gr
0 standard reaction Gibbs energy per unit reaction (1) turnovers, J mol–1

∆Hr reaction enthalpy per unit reaction (1) turnovers, J mol–1

k , k0 rate constants of ammonia synthesis, mmol s–1 MPa–1 cmpellet
−3

k0 DGM parameter, cm
k1 DGM parameter
K, K0 adsorption coefficient of ammonia synthesis, MPa1/2

Kni Knudsen number for component i
Ki Knudsen coefficient for component i, cm–1

Kp equilibrium constant
Mi molar mass of component i, g mol–1

M mean molar mass of the reaction mixture, g mol–1

Ni molar flux density of component i, mol cm–2 s–1

N vector of mass and heat flux densities, mol cm–2 s–1

n number of components in reaction mixture
p gas pressure, kPa
pi partial pressure of component i, kPa
p1

∗ equilibrium nitrogen partial pressure
p⊕ conversion factor between pressure units: 101.325 
q tortuosity of transport pores
Q heat flux density, J cm–2 s–1

r reaction rate, mol cm–3 s–1

〈r〉 mean transport-pore radius (MTPM), cm
〈r2〉 mean of squared transport-pore radii (MTPM), cm2

R radius (sphere, infinite cylinder), half width (slab), cm
Rg gas constant, J mol–1 K–1

Ri rate of formation of component i, mol cm–3 s–1
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R vector of rates of formation, mol cm–3 s–1

T temperature, K
u dimensionless key component concentration c1/c1s

w pellet shape parameter
x dimensionless length coordinate z/R
yi mole fraction of component i
z length coordinate of the porous pellet, cm
∆ dimensionless global diffusivity of key component D1/D1s

ε porosity of transport pores
η effectiveness factor
θ dimensionless temperature T/Ts

λ effective thermal conductivity, J cm–1 s–1 K–1

λi mean free-path length of component i in the reaction mixture, cm
µ mixture viscosity, Pa s
νi (Mi/M)1/2

ρ dimensionless reaction rate = R1/R1s

ψ geometric transport parameter
ω numerical coefficient

Subscripts
s conditions at the pellet outer surface
i reaction mixture component
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