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A two-step procedure is developed and tested for the prediction of effectiveness factors fo
chiometrically simple catalytic reactions. In the first step the dependences of state variables (c
trations, temperature, pressure) on the concentration of the key reaction component is obtain
knowledge of these dependences allows then all the dependent variables in the catalyst pell
and heat balances to be expressed by this concentration. In the second step, a single balance
tial equation is solved and the effectiveness factor is obtained. In addition, a deeper insight il
concentration and temperature conditions inside the pores is gained. Information of this kind ¢
light on some features of the catalytic reactor behaviour. The analysis of ammonia synthesi
trates this point.
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The constitutive equation that forms the basis of the largest part of the extensi
erature on the prediction of effectiveness of porous catalysts is the FitR.|3is
law assumes direct proportionality between the diffusion flux contribution for a cor
nent and the composition gradient of this component. In porous solids, such a
correct only for binary diffusion on condition that diffusion is purely of the bulk
Knudsen type. Since all actually important catalytic reactions are multicomponer
pore diffusion takes place usually in the transition diffusion region, the applicatic
the Fick law can be considered only as a rough approximation.

This problem can be solved by the application of the modified Maxwell-Stefar
fusion equation (see,g, reff) which accounts for both the multicomponent charac
of reaction mixtures as well as for the transition diffusion mechdrfism

It is the aim of this contribution to show how the problem of the catalyst effec
ness prediction, in which the combined mass transport due to composition gra
(diffusion; described by the modified Maxwell-Stefan equation) and pressure gre
(permeation; described by the Weber equation) can be simply solved for stoichiol
cally simple reactions. As an illustration, the proposed method is applied to the
temperature, high-pressure ammonia synthesis. Since the transport parameters
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Non-lsothermal Simple Catalytic Reaction 253

commonly used promoted iron catalyst are not available, arbitrary values were
This prevents, however, direct comparison of the obtained results with experimer

PROBLEM FORMULATION

To predict the influence of mass and heat transport in porous catalysts on the |
heterogeneous reactions, it is necessary to solve the differential mass balances
tion mixture components together with the heat balance. For simple geometric <
of catalyst pellets (infinite slatw = 0O, infinite cylinderw = 1, spherew = 2) and a
simple reaction witm reaction components

2aA=0 @
i=1

(stoichiometric coefficients; > O for reaction products; < O for reactants and = 0
for inert components), these balances have the following form:

1d _
?&(ZWN)— R(cT) , @

1d _ (-AH)R;

A P ®

Herez is the geometric coordinate from the centze= (0) to the outer surface of th
porous pellet=R), Ris the radius of the sphere or infinite cylinder or the half-thit
ness of an infinite slakg = [cy, C,, ..., ¢,]" is the vector of molar concentrations
reaction components amlis the vector of molar flux densities of reaction mixture
unit total cross-section of the pellét,= [N;, N,, ..,N,]T, andR is the vector ofates
of formationof reaction components per unit volume of the catalyst p&llet(R;, R,, ...,
R.]". Concentration- and temperature-dependent components of this vectare
related to the (always positive) reaction raté,e. moles of reactionl() turnovers) per
unit volume of the porous catalyst

Ri=ar . @

Thus, R, is positive for reaction products; (> 0; rate of formation) and negative fc
reactants g < 0; rate of disappearancd).is the heat flux density per unit total cro:
section of the pellet, due to the heat of reactign&H, (Joule per mole of reactio)(
turnovers),T,is the pellet surface temperature.
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Sign convention: If temperature or a component concentration decreases from the outer pellet
(z = R) toward the pellet centre € 0), the corresponding flux densitly; or Q, is directed toward
the pellet interior and is positive.

Using the Maxwell-Stefan approach in formulation of combined gas transport d
composition and pressure gradients in multicomponent gas mixtures, the const
equations, which relate the flux densitiego the driving forces ddz can be formu-
lated for two models of porous mediumz. the Mean Transport—Pore Model (MTPN
and Dusty—Gas Model (DGM) in the following way:

dc _
i FN . ®)

The elements ofi*n matrix F = {f;} for MTPM and DGM are shown in Appendix 1.
To obtain the profiles of concentrations of reaction mixture compone(®s (i =
1,..., n), and temperaturej(2), it is necessary to solve the system mof+(1) coupled
ordinary differential equation$) and {) obtained by combining Eq®)and §), and

Eq. @) with the Fourier lanQ = A dT/dz

1 .d [y dell_
2 dz EZNF dzD_R ’ ©)
1d0,,dd(-AH)
Q&DZ’V)\(TD:—ir : v
O dzg T&

Here, A denotes the effective heat conductivity of the porous catalys® and/T,
whereT;is the temperature at the outer surface of the catalyst pg(Rt£ Ty).

The boundary conditions of the syste@), (7) follow from

1. the symmetry of the concentration and temperature fields

atz=0: a/dz=0,

®ldz=0, &)

2. the known concentrations and temperature at the pellet outer surface

atz=R C=¢Cg,

8=1, ©)
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C;represents the vector of molar concentrations of a reaction mixture component
outer catalyst surface(R) = c,).

This is the § + 1)-dimensional split boundary value problem which has to be so
iteratively. Even though standard algorithms exist for this purpose, repeated sol
e.g, for changing bulk gas composition and temperature along an integral reactor.
ents an unpleasant numerical problem. Additional complication is introduced b
necessity of inverting matrik in each integration step.

Solution of the multidimensional boundary value problem can be, however, cir
vented by taking into account the stoichiometry of reactigratid splitting the solu-
tion into two steps.

TWO-STEP SOLUTION METHOD
First Step

Obviously, the molar flux densitiebl,, are coupled by the reaction stoichiometty (

, ij=1,..n. 10)

0| Z
o Z

For inert components of the reaction mixture both their net flux densities and
chiometric coefficients equal zero. Thus, it is possible to write Bqgin(the form of
following constitutive equations

G L (11)
dZ D 1 1 1

with the (formal) global diffusivitie®; defined as
i=1,..n. 12

Similarly, from the Fourier law,

@ _Q
dz AT, (13

Under steady-state conditions, the mass flux of the key reaaant A;) across a
boundary surface surrounding a portion of the porous structure equals the amol
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acted within this portion. The released reaction heat must all be transferred acrc
same boundary,e.,

Q=N;(-AH)/a,; . 14
Thus,
do _ N,
E - Dn+1 (15)
with
1 —AH,
Dn+1 N )\Tsal . (16)

From Egs 12), (12), (15), and (6) it follows that the relations between concentr
tions of non-key components\y,..., A,) and the key componendy), ¢, = ¢(c,), and
dimensionless temperature and concentration of the key compdeyt, are de-
scribed by the set of first-order ordinary differential equatid¥ (

dg D, 2o

——=—, i=2,..n

dc; Dy )
de _ D

de; Dy’

with boundary conditions describing the situation at the outer surface of the ca
pellet

for c;=c: G=Cg, 1=2,..n
6=1 18)
By integrating the initial value problem?) from c; = ¢;sto ¢; = 0 (in case of incom-
plete disappearance of the key comporfgninder equilibrium conditions, to, = c$9,

the mutual dependencegc;) (i = 2, ..., n) and(c,) are obtained. Obviously, the tote
molar concentratiorg, can be obtained as
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Non-lsothermal Simple Catalytic Reaction 257

c= ch : 19

For perfect gases, the pressugefollows asp = cR;T. Numerous preliminary calcula
tions have shown that the dependencés) and 6(c,;) are monotonous and nearl
linear and thus can be easily approximated by low-order polynomials.

Second Step

In the course of integration of systert/), it is easy to evaluate simultaneously tl
global diffusivity D, as a function ot;; D,(c;). Because of the monotonous nature
this dependence, it is easy to approximBigc,), e.g, by a low-order polynomial.
Then, it is feasible to use directly the second-order ordinary differential equatiol
tained by elimination oN; between the mass balan@),((for i = 1), and constitutive
equations 11). With the following definitions

G _D; Ry z
Cis Dls Rls R
this ordinary differential equation can be written as
d’u  wdu uﬁ
gu wad , 21
dx2  x dx gu A 1)
where the generalized Thiele moduMsis given as
-R
MZ=RR — 5 22
C1sDis

and @ characterizes the concentration dependence of the global effective diffus
D,, oncy:

dinQ)

® du

@3

R, is the rate of key-component formation for concentrations and temperature
outer surface of the catalyst pell&®; = R,(c,, 8 = 1). Similarly,D,,, is the global
diffusivity at the catalyst outer surfad®,,= D,(c,, 8 = 1).

Boundary conditions to be used with Egl) are
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atx=0 dy/dx=0 ,

atx=1 u=1, (24)

i.e., a split boundary value problem for one second-order ordinary differential equ
must be solved. From the obtained profi(®), i.e., ¢,(2) and the dependencegc;) (i =
2,..., n), and6(c;), determined in the first step, it is possible to calcuRig).

The catalyst effectiveness factay, defined in the usual way as the ratio of t
amount of reactant actually reacted in the catalyst pellet to the amount which \
react under conditions without mass and heat transport resistance, can be determ
integration of local rates of key-component reacti®p, over the whole pellet

_w+1
= e

R R, 1
— W,
n _|'Oz"""__€lS dz=(w+ 1) on padx . (25)

EXAMPLE: AMMONIA SYNTHESIS

The general formulation developed above will be illustrated with the case of amr
synthesis

N,+ 3 H,= 2 NH, ®

(A; = Ny; A, = Hy; A3 = NH; the presence of an inert gas, (e.g, Ar), is assumed:
hencen = 4). The stoichiometric coefficients ai®:= —-1;a, = —3;a; = 2;a, = 0.

The first attempts in the field of effectiveness factor in ammonia synthesis
summarized by Nielsé€nMore realistic formulations were used later by Dyson &
Simort?, Sing and Sarafand Szeiferet al*?.

First Step

The global diffusivitiesD,, D,, D3, D, and D are defined by Eq.1@) usingF matrix
elementsf;, given in the Appendix 1 for MTPM and DGM.

The set of coupled ordinary differential equations for relations between conce
tions and temperature, and concentration of the key componyén), c5(cy), C4(Cy),
8(c,), has the following form

dc, D; deg D; dc;, Dy do Dy

d, D, de; Dy dg; D, dc, Dg° 6)
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The total molar concentratiomr, equals the sum of molar concentration of react
mixture components = ¢; + ¢, + C3+ Cy.

The set of ordinary differential equation is integrated fopmc, s (Wherec, = C,g C3= Cyg
C,=C4s 6 = 1) toc, equal to zero or to equilibrium value§® Substitution of the
current variablesd(, 8) into the equilibrium condition of ammonia synthéis

3

p(T)_E 5=0, @7

can check attaining equilibrium conditions in each integration stepdénotes the
molar concentration in the standard state of gasesat system temperature and presst
101.325 kPa). When this condition is fulfilled, further integration can be stopped.
ing the integration, the dependence of global diffusi\ity, on the molar concentratiot
of the key component;, is evaluatedD, for conditions at the outer surface of tf
catalyst pelletp,,, is determined by substitution of the surface values of variables
D, definition.

The dependences,(c,), c5(cy), c4(cy), 6(cy), Dy(cy), obtained for MTPM and pa-
rameters summarized in Table | are shown in Figs 1 and 2. It can be seen that <
lines are obtained fag(cy) (i = 2, ..., 4) as well as fob(c;) andD,/D;{c;).

Also shown in Fig. 1 is a slight dependence of the relative total pressure on cc
tration of the key componert;. As expected, the total pressure decreases in the d

3
? a b
£ .
S =2, H '
© =2, Hy . i=3,NH
g . » NH3
£ / .
g 27 |
i=2,H,
.'/
i=3, NHg
1L 1 _
i=4, Ar i=4, Ar
0 ' :
0.0 0.5 0 1 2
-3 _
¢, (Ny), mmol cm ¢1 (Ny), mmol em 3
Fic. 1

Concentration dependences for ammonia synthesis at 700 K and 19.78 &JR#9Q atm) according
to MTPM. A; = Ny A, = Hy; Az = NH3 A, = Ar. Bulk gas composition MH,/NH5/Ar (vol.%):
a (stoichiometric ratio MWH, = 1/3) — 22.5/67.5/0/1Q (equimolar ratio WH, = 1/1) — 45/45/0/10.
Dotted lines show unattainable concentrations above reaction equilibrium
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tion toward the pore endle., with decreasing;. Owing to the large mean transpor
pore size [{0= 100 nm), the Knudsen transport contribution is minor and the effec
permeability quite high. Thus, small total pressure gradients suffice to produce

meation fluxes of reaction mixture components.

TaBLE |
Parameters for effectiveness factor calculations

Parameter

Value

Temperature

Pressure

Mean transport-pore radius, [

Mean of squared transport pore radii? O
Geometric parametegy

Binary bulk diffusivities Dff

Catalyst effective thermal conductivity,

700 K
19.78 MPad;, 200 atm)
100 nm
10 000 nmh
0.1
estimated refs-2?
0.001 J cm stk

Reaction enthalpyAH: -92.1 kJ mot
Pellet shapew (sphere) 2
Pellet radiusR 0.3 cm
w11
IE a b
o
2
1S T/Tg ----I.—/.TS
S 1of....::::11222:::::7 1 ._....:::ZII::::::7
c/cg . c/cg ;
09" PP s " DDy
0.8 L I
0.0 0.5 0 1
7 ¢1 (Ny), meol cm™3 ¢1 (N,), mmol cm™3
Fic. 2

Dependences of temperatu@Ty), total pressurec(c) and global diffusivity D,/D;g), onc; for ammonia
synthesis at 700 K and 19.78 MRa( 200 atm) (MTPM). A= N,; A, = H,; Az = NH3; A, = Ar.
Bulk gas composition MH,/NH/Ar (vol.%): a (stoichiometric ratio BYH, = 1/3) — 22.5/67.5/0/10;

b (equimolar ratio WH, = 1/1) — 45/45/0/10
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Contrary to expectation, for a reaction accompanied by a decrease in the nurr
moles, DGM predicts a slight total pressiumereasewith decreasing,. This is even
more marked for smaller pores. Hoirl= 5 nm and the equimolar concentration ratio
nitrogen and hydrogen in the bulk gas, DGM predicts 21.48 M@aZ12 atm) at the
place in the pore where nitrogen is completely exhausted. In agreement with ex
tion, MTPM predicts for the same conditions 19.86 MiRa, (196 atm). Therefore, the
following calculations were performed with MTPM only.

By using the publishéd standard Gibbs energy change of reactith AG?, the
equilibrium constant<,, was determined fromAG = RyT In (Ky). Application of Eq. 27)
then permitted to determine the reaction mixture compositions inside the pores:
are below equilibrium (full lines in Fig. 1). Obviously, compositions for which
reaction equilibrium is exceeded (dotted lines in Fig. 1) cannot be reached. The
able composition intervals are very narrow, which points to a significant role of |
tion equilibrium in the ammonia synthesis. It can be also seen that hydr
concentration decreases much less than nitrogen concentration even though tt
gas at the pore entrance contains the stoichiometric ratio of components. Argon ¢
tration inside the pores remains nearly the same as in the bulk gas, similarly as tf
molar concentration (pressure).

Second Step

If the kinetic equation of the reaction is known, then the approximations,(oy),
C3(C4), €4(cy), 6(cy) andD4(c;) can be used for evaluationﬁfandp (Eq. 0)) and the
derivative d In A)/du (Eg. 23) as functions ol (i.e., dimensionlesg;). The Thiele
modulus M (Eqg. 22)), is determined from the pellet surface conditions. The integra
of the mass balanc@1) with split boundary condition®4) is performedvia any suit-
able numerical algorithne(g, a shooting method).

Since the Temkin—Pyzhev rate equation (seg, refs%-2141¥ is inapplicable to the
inlet of a packed bed catalytic reactor where the reaction mixture is free of amn
an equation of the form suggestedy, by Thomas and Thom¥svas used

_ k(p—pPD/pg
r= 05, :ﬁ )
EIHK%LL:E
d OP2” ™

Here p; are the component partial pressungs,= 101.325 (dimensionless) amg
denotes nitrogen partial pressure in equilibrium with other reaction mixture col
nents,

@9

pr=p? 5 /(P3K,) - @9
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The constant& andK in the form

k=kg expEA
0

Rl

im

7

0
(30

Wil
K=K, exp @3%: 00%

were obtained by matching the high-pressure experimental data of Métsetlempera-
tures 410-500C. The following values were obtaindg:= 395 mmol st MPat ol =T
A =8.2396 K, K,= 260.8 MP&? B = 3 470.7 KL

Using this rate equation, the profile of attainable key component concentgbpn
is obtained. By combining,(x) with approximations,(c;), c5(c,), c4(c;) andB(c,), it
is possible to determine the concentration profiles of all the reaction mixture co
nents,c;(x), as well as the temperature profil&). From Fig. 3 it can be seen that f
hydrogen, nitrogen and argon these profiles are only very slightly curved (not
scale ofc,, ¢, and c, axes). Only the ammonia profile is more pronounced. The t
perature profileT(x), is not shown as the calculations only predict an increase of O

in the pellet centre.

The profile of local reaction rates for the stoichiometrigHy mixture containing no
ammonia and 10% argon are shown in Fig. 4 for 700 K and 19.78 MR&00 atm).
The profile is very steep near the pellet outer surface showing that the main prop
of the reaction takes place in a shallow outside layer of the catalyst pellet. The

45.0 -
p,/101.325 Ny
kPa 45| - -~ ]
135.0 ‘ =
p,/101.325 H/Z ///
kP2 yaas| _ Fie. 3 , _
— Partial pressure profileqa(®), i = 1-4),
1ok T inside a porous catalyst for ammoni
p4/101.325 ' \’\1"3 synthesis at 700 K and 19.78 MP
kPa 05+ ~._ 7 (i.e, 200 atm) (MTPM). A= N
0.0 ) A, = Hy Az = NHg A, = Ar. Bulk
19.995 L A 7] 9as composition lz\dH_Z/NH3/Ar
p4/101.325 o (vol.%): (stoichiometric ratio MH, =
kPa  19.0a5L e _ 1/3) 22.5/67.5/0/10. (Partial pressure
— ‘ P = GRyT, are used instead o
0.0 0.5

10 molar concentrations; .)

Collect. Czech. Chem. Commun. (Vol. 63) (1998)



Non-lsothermal Simple Catalytic Reaction 263

tiveness factom), calculated according to EQR5) equals 30.8%. As a rough compat
son, Dyson and Siméhpredict for similar conditiong = 13%.

The problem of the effectiveness factor for ammonia synthesis combines the «
ing transport rates of reaction mixture components, which make the composition |
pores quite different from the bulk gas composition, with the unfavourable rea
equilibrium. To look further into this problem, the effectiveness factors for the inle
a packed-bed reactord., with no ammonia presence in the bulk gas) was calcul:
for different nitrogen/hydrogen ratios. The results are presented in Fig. 5 which ¢
the sensitivity ofq to this factor.

Another example, shown in Fig. 6, illustrates the sensitivity b the content of
ammonia in the bulk gas. Along a packed bed reactor, in which nitrogen and ami
are consumed and ammonia is produced, the effectiveness factor increases fr
lowest value at the reactor entrange=(30.8%) to nearly 100% when a 5% conversi
is reached. However, at this point, the reaction mixture is close to thermodyr

1.0

rx)lrg

051 _

FG. 4
Profile of local reaction rates for am-
monia synthesis at 700 K and 19.78 MPa
(i.e,, 200 atm) (MTPM). Bulk gas compo-
sition No/H,/NHg/Ar (vol.%): (stoichio- 0.0 |
metric ratio N/H, = 1/3) — 22.5/67.5/0/10 0.0 0.5 1.0

0.6 T T

n

0.4

Fc. 5
Influence of nitrogen mole fraction in the
bulk gas on the effectiveness factor fo2 -
ammonia synthesis at 700 K and 19.78
MPa (.e, 200 atm) (MTPM). Bulk gas
contains no ammonia and 10% Ar. :
Dotted lines show the effectiveness facpy L ! L

|
for stoichiometric N/H, mixture 0.0 0.2: 0.4 0.6 0.8 10
¢1/(cq + ¢y), vol.%
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equilibrium and hence the reaction rate is nearly zero; the mass and heat transpol
play no role.

CONCLUSIONS

The suggested two-step procedure for determination of catalyst effectiveness fac
stoichiometrically simple reactions removes the necessity of solving the bour
value problem for sets of coupled non-linear differential equations. At the same ti
deeper insight into the concentration and temperature conditions inside the pc
gained. Information of this kind can cast light on some features of catalytic re
behaviour. An analysis of the ammonia synthesis illustrates this point.

APPENDIX 1

Matrix F

The modified Maxwell-Stefan equation can be used for relating the molar flux
sities,N;, to molar concentration gradients.

The actual form of dependencesfpbn ¢; and parameters that characterize the p
structure of the catalyst, depends on the way the pore structure is modelled and
applied physical description of individual mass transport processes taken into ac

The mean transport-pore model (MTPM, #éf$3 visualizes that part of the por
structure through which the decisive part of mass transport takes place as a bu
straight cylindrical non-intersecting capillaries with radii distributed around the ma
(mean transport-pore radius, model parameter). The distribution of pore radii is cl
terized through the mean squared transport-pore ratfidgnodel parameter). The fac
that not necessarily all pores are active in mass transport is expressed in the thirc

1.0 |- B
n
05 |- -
Fic. 6
Change of the effectiveness factor wit
bulk gas conversion to ammonia (770 k
19.78 MPa,i.e,, 200 atm) (MTPM). Stoi-
0.0 | | | chiometric ratios of Bl H, and NH; in the
) 5 10 15 bulk gas; at zero conversion, the bulk g:

Conversion to ammonia, % contains 10% Ar
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parameteri, which combines the porosity of transport poegsyith their tortuosity g:
Y = ¢/g. These parameters are the material constants of the porous medium de:
by MTPM and have to be obtained experimentally.

When these model assumptions are combined with the Maxwell-Stefan equati
multicomponent diffusion in the transition region between Knudsen diffusion
molecular diffusion, and modified Darcy equation (see Appendix 2) for gas mix
permeation, the elemenfisof matrixF in Eq. ) have the form

1. 0C & G .
f.=—+ +yY——, i=1,..n
" DK cDk %cD{j“
]:
i (AL.2)
foegd L0 1 %
GOy~ mds LI=L.n i
S
where 1_5_%%(& B)
Dk 5 cDpf
ji
Q= , i=1,..n. (A1.2

The effective Knudsen diffusion coefficient of compongrid¥, and the effective bi-

nary molecular diffusion coefficient of pai, Dj, are defined as follows

DK = MK, Di"=yDf" , (A1.3
whereDj" is the molecular diffusivity of pairj and

K.

2
2 BRTO
=200 (Al.4
35, 5

(M; is the molecular weight of componeint

The dusty-gas model (DGM, réf&) visualizes the porous medium as a collection
giant spherical molecules (dust particles) kept in space by external force. The mot
gas molecules in the space between dust particles is described by the kinetic th
gases. The DGM transport parametieysndk; appear in the definitions of effective
diffusion coefficientsDX and Di* (see below). The third transport paramdigcharac-
terizes the viscous flow contribution (Appendix 2). Similarly to MTR],k; and B,
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have to be obtained experimentally for the given porous solid. Formally, DGM
meterk, can be identified with the product of MTPM paramet@éi® and paramete;
with . Also, B, equals[i?[1/8.
The elements of the DGM matrix f;, are identical with the corresponding elemer
of the MTPM matrix. The only difference is in the definitionogf For DGM it reads
B
Di _
og=——"—, i=1,..n. (Al.H
-G
1+B Y —
ZCD}‘
j=1
The effective Knudsen diffusion coefficient of compongerd¥, and the effective bi-

nary molecular diffusion coefficient of paij, D, are given as

Dk=kyK; , DJ'=kDII . (AL.9

APPENDIX 2

Effective Permeability

For MTPM, the permeation contribution to the molar flux density of compone
is given by the modified Darcy equation

(A2.1)

oo
]R8

Under non-isothermal conditions, the correct driving force in the Darcy relation is

dp_1f{ldc dT0 do, dInT

1dp_1
RTax TH dx Cax ax "¢ o

The assumption that the driving forc@ In T/dx) may be neglected can be formulated as

dinT __dc ie dInT<<l 0 dr __dc
dx dxk 7 dlinc T c

This means that when the isothermal driving force in the Darcy equation is used, the relativ

perature change must be much lower than the relative change in total molar concentration.
As an example, let us consider the following situation:pAt 20.265 MPai(e., 200 atm) and

T = 700 K, the total molar concentratien= 3.48 mmol cm®. If Ac = 10% ofc and AT = 10 K,
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then, a/c = 0.1 and @/T = 10/700 = 0.014. Hence Tl << dc/c (0.014 < 10), and the condition fo
neglecting of the temperature driving force is fulfilled.

The effective permeability coefficient for each componé@nt,is expressed by the
Weber equation modified for multicomponent mixtdre$

wv; +Kny 2
= Dk —! !
B, =D; 1+Kn + 81 p . (A2.2

Here [@°Ostands for the third parameter of the MTPM to be obtained experimen
It represents the mean value of the distribution of squared transport-pore radii.
meterw is a numerical coefficienty(= 3116, 173, ...) which depends on the develoj
ment details of the Weber equatian;is the square root of relative molar mass

v = (M/M)¥2 M:iyiMi , (A2.3
i=1

y;'s are the component mole fractions in thomponent gas mixturkn; are the
Knudsen numberd,e., the ratios of molecule mean free-path lengths,to pore
diameter. The problem of obtaining the mean free-path length of a componen
multicomponent mixture was analysed eatfier

Usually, the permeability measurements performed on porous solids result in
tive permeabilities which depend linearly on pressure. This situation is in agree
with the Weber equation both for very high or very low values of the Knudsen nur
In case of coarse pores of the promoted iron catalyst, the Knudsen numbers a
dently very low. Hence, the following linear dependerigés)

mZ
B =DKwv, + SE'J p (A2.9

were used in the present calculations instead of the full Weber equafich (

In DGM, only the viscous contribution to the net permeability flux is considel
Hence,

N{:B%@ , (A2.5

with the effective permeability coefficie® (identical for all mixture components)

B
B:%p , (A2.6)
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where By is the third DGM model parameter. By comparing with MTPBj,can be
expressed aB, = [A(1/8.

SYMBOLS
a stoichiometric coefficient of componeint
A i-th component of reaction mixture
A temperature coefficient of ammonia synthesis rate conktalt®
B effective permeability (DGM), chs™?
B temperature coefficient of ammonia synthesis adsorption coeffigieit?
Bi effective permeability of componen{MTPM), cn? s
Bo viscous flow parameter (DGM), ém
GCi molar concentration of componentmol cnt?
c total molar concentration, mol cfh
c vector of molar concentrations, mol ©hn
co molar concentration in standard state, mottm
DX effective Knudsen diffusivity of componentcn? s
D bulk diffusivity of pairi—j, cn?s™
D effective bulk diffusivity of paii—j, cn? s?
Dj global diffusivity for componeni, cn? s
fi element of matri>E, s cn1?
F matrix, s cm?
AG? standard reaction Gibbs energy per unit reactipriufnovers, J mot
AH; reaction enthalpy per unit reactiof) furnovers, J mot
k, ko rate constants of ammonia synthesis, mmbMPa ! cnpdjiet
ko DGM parameter, cm
k1 DGM parameter
K, Ko adsorption coefficient of ammonia synthesis, MPa
Kn; Knudsen number for component
Ki Knudsen coefficient for componentcnt?
Kp equilibrium constant
Mi molar mass of componentg mot?
M mean molar mass of the reaction mixture, g ol
N; molar flux density of componemt mol cnt?s?
N vector of mass and heat flux densities, mot<smt
n number of components in reaction mixture
p gas pressure, kPa
pi partial pressure of componentkPa
pt equilibrium nitrogen partial pressure
po conversion factor between pressure units: 101.325
o} tortuosity of transport pores
Q heat flux density, J crAs™?
r reaction rate, mol cms?
i mean transport-pore radius (MTPM), cm
020 mean of squared transport-pore radii (MTPM)2Zcm
R radius (sphere, infinite cylinder), half width (slab), cm
Ry gas constant, J nidlK1
R; rate of formation of componentmol cnr3s™
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¥>D5 M [N XsC X3

<=

e€©

vector of rates of formation, mol cAs?

temperature, K

dimensionless key component concentratigns

pellet shape parameter

dimensionless length coordinatiR

mole fraction of componert

length coordinate of the porous pellet, cm
dimensionless global diffusivity of key compon@wD1s
porosity of transport pores

effectiveness factor

dimensionless temperatuféTs

effective thermal conductivity, J cis 1K™

mean free-path length of componémb the reaction mixture, cm
mixture viscosity, Pa s

(MilM)¥2

dimensionless reaction rateRg/Ris

geometric transport parameter

numerical coefficient

Subscripts

s
i

O~ WNPFP

~N o

10.
11.
12.
13.

14.
15.
16.

17.
18.

conditions at the pellet outer surface
reaction mixture component
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